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We study dynamical ordering of rods. In this process, rod alignment via pairwise interactions competes with
diffusive wiggling. Under strong diffusion, the system is disordered, but at weak diffusion, the system is
ordered. We present an exact steady-state solution for the nonlinear and nonlocal kinetic theory of this process.
We find the Fourier transform as a function of the order parameter, and show that Fourier modes decay
exponentially with the wave number. We also obtain the order parameter in terms of the diffusion constant.
This solution is obtained using iterated partitions of the integer numbers.
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I. INTRODUCTION

Phase transitions from an isotropic, disordered state to a
nematic, ordered state are fundamental in equilibrium statis-
tical physics �1�. They occur in liquid crystals �2,3�, complex
fluids �4�, and are closely related to phase synchronization
�5–7�. The standard approach for describing order-disorder
phase transitions is based on a Hamiltonian description.
However, it may not necessarily apply in nonequilibrium set-
tings such as granular systems �8–10�, where a nonequilib-
rium approach, that is based on kinetic interaction rules, may
be required.

We study dynamical alignment of rods and show that the
corresponding kinetic theory framework is appropriate for
describing the underlying order-disorder phase transition.
This approach conveniently allows characterization of statis-
tical properties such as the distribution of rod orientation.

We consider the mean-field theory for alignment of inter-
acting polar rods, introduced recently as a model �11� for
ordering of microtubules by molecular motors in a planar
geometry �12–17�. In this model, rods become aligned by
pairwise interactions, and they may also wiggle in a diffusive
fashion, the latter process being governed by a white noise.
This system reaches a steady state where alignment by inter-
actions is balanced by diffusion. With strong diffusion, the
system is disordered, but with weak diffusion, the system
becomes ordered.

Our main result is an exact steady-state solution for this
kinetic theory. The Fourier modes obey a closed set of
coupled nonlinear equations. By iterating these equations, it
is possible to relate all Fourier modes to the lowest mode,
which in turn is equivalent to the order parameter. Similarly,
the order parameter itself is shown to obey a closed equation
and this allows one to express the distribution of rod orien-
tations in terms of the diffusion constant. While in principle,
the complete solution involves an infinite number of Fourier
modes, in practice, it is sufficient to consider only a moder-
ate number of modes because the Fourier modes decay ex-
ponentially with the wave number.

The exact solution is ultimately related to iterated parti-
tions of the integers numbers. This feature is generic: it ap-
plies to general alignment rules, as well as to arbitrary align-
ment rates. We also find that depending on the alignment

rate, the system may or may not undergo a phase transition.
This paper is organized as follows. In Sec. II, we describe

the rod alignment model. In Sec. III, we perform the Fourier
transform of the governing equation, which is then solved in
Sec. IV. We discuss nearly perfect alignment in Sec. V, and
briefly mention several generalizations in Sec. VI. We con-
clude in Sec. VII.

II. THE ROD ALIGNMENT MODEL

In the rod alignment model, introduced by Aranson and
Tsimring �11�, there is an infinite number of identical polar
rods, each with an orientation −�����. The rods become
aligned via irreversible pairwise interactions. As a result of
the interaction between two rods with orientations �1 and �2,
both rods acquire the average orientation as follows �see also
Fig. 1�

��1,�2� → ��
�1 + �2

2
,
�1 + �2

2
�, ��1 − �2� � �

��1 + �2 + 2�

2
,
�1 + �2 + 2�

2
�, ��1 − �2� � � .

�1�

Here, and throughout this study, addition and subtraction are
implicitly taken modulo 2�.

There is also randomness in the form of a white noise:
each rod wiggles in a diffusive fashion, and this process is
characterized by the diffusion constant D. Specifically, in
addition to the alignment process �1�, the orientation of a rod
changes according to d� /dt=� with � an uncorrelated white
noise 	��t���t��
=2D��t− t��.

FIG. 1. Illustrating of the alignment process.
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Let P�� , t� be the probability distribution function of rods
with orientation � at time t. It is normalized to one,
�−�

� d�P�� , t�=1. This distribution function satisfies the
integro-differential master equation �11�

�P

�t
= D

�2P

��2 + �
−�

�

d�P�� −
�

2
�P�� +

�

2
� − P . �2�

The first term on the right-hand side describes diffusion. The
integral accounts for gain of rods with orientation � as a
result of alignment of two rods with an orientation difference
of �, while the negative term accounts for loss due to align-
ment. Without loss of generality, the alignment rate is set to
1/2 so that the loss rate equals one. This kinetic theory gen-
eralizes the Maxwell model of inelastic collisions in a granu-
lar gas as all rods interact with each other and additionally,
the alignment rate is independent of the relative orientation
�18,19�.

III. THE FOURIER TRANSFORM

The governing master equation �2� is nonlinear and non-
local. Its convolution structure suggests using the Fourier
transform

Pk = 	e−ik�
 = �
−�

�

d�e−ik�P��� . �3�

The zeroth mode equals one, P0=1, because of the normal-
ization, and also, Pk= P−k

* . The angular distribution can be
expressed as a Fourier series

P��� =
1

2�


k=−	

	

Pke
ik�. �4�

Since the alignment process �1� is invariant with respect
to an overall rotation �→�+
 with an arbitrary phase
0�
�2�, if P��� and Pk are solutions of �2�, then so are
P��+
� and Pke

ik
, respectively.
The order parameter R= �	ei�
 � = �P−1�, with the bounds

0�R�1 probes the state of the system. A vanishing order
parameter indicates an isotropic, disordered state, while a
positive order parameter reflects a nematic, ordered state.

We focus on the steady state. Substituting the Fourier se-
ries �4� into the master equation �2�, setting �P /�t�0, and
integrating over �, we find that the Fourier transform satis-
fies a set of coupled nonlinear equations �11�

�1 + Dk2�Pk = 
i+j=k

Ai−jPiPj , �5�

with Aq= 1
2��−�

� d�eiq�/2= sin�q/2
�q/2 . The coefficients Aq are sym-

metric, Aq=A−q, and explicitly

Aq = �
1, q = 0;

0, �q� = 2,4, . . .

�− 1��q−1�/2 2

��q�
, �q� = 1,3, . . . .

�6�

In �5�, when k=0, the sum contains only a single term,
P0= P0

2 and indeed, P0=1.

Since P0=1 is known, the identical terms A−kP0Pk and
AkPkP0 in the steady-state equation �5� are linear in Pk, and
thus, we move them to the left-hand side. Then Eq. �5� be-
comes

�1 + Dk2 − 2Ak�Pk = 
i+j=k

i�0,j�0

Ai−jPiPj . �7�

Next, we absorb the prefactor on the left-hand side into the
kernel on the right-hand side by introducing the rescaled
kernel

Gi,j =
Ai−j

1 + D�i + j�2 − 2Ai+j
. �8�

With this transformation, we arrive at a compact, and simpler
to analyze, equation for the steady-state Fourier transform

Pk = 
i+j=k

i�0,j�0

Gi,jPiPj . �9�

The kernel Gi,j couples the ith and the jth Fourier modes. It
has the following properties:

Gi,j = Gj,i, �10a�

Gi,j = G−i,−j , �10b�

Gi,j = 0, for �i − j� = 2,4, . . . . �10c�

The governing equation �9� is nonlinear and moreover, for
odd k, the sum contains an infinite number of terms. Despite
this, it is still possible to solve this equation analytically.

IV. EXACT SOLUTION

First, we notice that Eq. �9� can be iterated once, leading
to a sum of products of three Fourier modes

Pk = 
i+j=k

i�0,j�0


l+m=j

l�0,m�0

Gi,jGl,mPiPlPm. �11�

Clearly, this procedure can be repeated any number of times,
leading to a sum over products of any given number of
Fourier modes.

Using this iteration procedure for all but the lowest
Fourier mode, it is possible to express Pk as an explicit func-
tion of P±1 only. For instance, when k=2, Eq. �9� is simply
P2=G1,1P1

2 and when k=4 one has P4=G2,2P2
2. Thus, the

fourth Fourier mode is also expressed in terms of the lowest
mode, P4=G2,2G1,1

2 P1
4 �20�. Odd modes, in contrast, involve

an infinite sum. For the third mode,

P3 = 2G1,2P1P2 + 2G−1,4P−1P4 + ¯ ,

and substituting the second and the fourth moments above

P3 = 2G1,2G1,1P1
3 + 2G−1,4G2,2G1,1

2 P1
4P−1 + ¯ .

Generally, the kth Fourier mode can be written as an in-
finite series involving terms of the form
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P1
k+nP−1

n = P1
k�P1P−1�n = P1

kR2n

with n a positive integer. Recall that P1=Rei
. Without
loss of generality, we can set the phase to zero, 
=0. Then
P1=R and the Fourier modes can be written explicitly in
terms of the order parameter R

Pk = Rk
n=0

	

pk,nR2n. �12�

Of course, p0,n= p±1,n=�n,0. Since pk,n= p−k,n it suffices to
solve for k�0.

The coefficients pk,n represent all iterated partitions of the
integer k as follows:

�13�

The iterated partition involves a series of integer partitions
k= i+ j, subject to the following restrictions: �i� i�0 and
j�0, �ii� �k � �1, �iii� Gi,j�0. Each such partition con-
tributes a factor Gij to pk,n �Fig. 2�. For example, the parti-
tion 2= �1+1� gives p2,0=G1,1 and the two equivalent parti-
tions 3= �1+2�= �1+ �1+1�� and 3= �2+1�= ��1+1�+1� give
p3,0=2G1,2G1,1. We list all nonvanishing terms up to the
fifth order in R

p2,0 = G1,1, �14a�

p3,0 = 2G1,2G1,1, �14b�

p3,1 = 2G−1,4G2,2G1,1
2 , �14c�

p4,0 = G2,2G1,1
2 , �14d�

p5,0 = 2G1,4G2,2G1,1
2 + 4G2,3G1,2G1,1

2 . �14e�

Here, we used the symmetries �10a� and �10b� to consolidate
identical terms. We stress that the partitions used here differ
from traditional integer partitions in that they involve nega-
tive integers and in that they are iterated �21�.

Substituting the series expansion �12� into the steady-state
equation �9� and equating the same powers of R, the coeffi-
cients pk,n satisfy

pk,n = 
l+m=n


i+j=k

i�0,j�0

pi,lpj,m. �15�

Since the indexes l and m are positive, this is now a recur-
sion equation. Starting with p0,0= p1,0=1, and utilizing the
symmetry pk,n= p−k,n, Eq. �15� is solved recursively. This
provides a systematic method for obtaining the coefficients
pk,n.

The series �12� expresses all the Fourier modes in terms
of the order parameter R. It remains to obtain the order pa-
rameter R as a function of the diffusion constant D. By sub-
stituting the Fourier solution �12� into the governing equa-
tion �9� and setting k=1, we find that the order parameter
itself can be expressed as an infinite series

R = 
n=1

	

rnR2n+1. �16�

The coefficients rn are given by the very same recursion
equation �15�

rn = 
l+m=n


i+j=1

i�0,j�0

pi,lpj,m. �17�

The coefficient rn is the counterpart of the coefficients pk,n
and it represents iterated partitions of the number 1 as in
�13�. The partitions may not involve 0’s. Except for the very
first partition, the numbers ±1 may not be repartitioned
�Fig. 2�. The first few coefficients are

r1 = 2G−1,2G1,1, �18a�

r2 = 4G−2,3G1,2G1,1
2 , �18b�

r3 = 4�G−2,3G−1,4 + G−3,4G1,2�G2,2G1,1
3 . �18c�

Equation �16� is a closed equation for the order parameter.
Once it is solved, all Fourier modes follow from �12�. This
completes the solution for R and Pk, and therefore for the
angle distribution P���.

In practice, one can calculate the order parameter R as
a root of a polynomial of degree N by truncating �16�. For
N=3, substituting �6� and �8� into �18a� yields

r1 = −
4

3�
�1 + D − 4/��−1�1 + 4D�−1,

and using �16� gives the cubic equation for the order param-
eter

R =
4

3�

1

Dc − D

1

1 + 4D
R3, �19�

with the critical diffusion constant

FIG. 2. The iterated integer partitions. Illustrated is the partition
corresponding to p3,1=2G−1,4G2,2G1,1

2 . Each partition k= i+ j with
i�0 and j�0 generates a factor Gi,j. The factor 2 accounts for the
two equivalent partitions.
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Dc =
4

�
− 1. �20�

For D�Dc, there is only the trivial solution R=0, corre-
sponding to an isotropic state where the rods are randomly
aligned: Pk=�k,0 and P���= 1

2� . Below the critical point,
D�Dc, there is also the nontrivial solution �Fig. 3�

R =�3�

4
�1 + 4D��Dc − D� . �21�

This corresponds to a nematic phase in which the rods are
partially aligned. Near the transition point, this alignment is
weak, but it becomes stronger and stronger as D decreases.
The result of Eq. �21� is approximate—only the cubic term
in �16� has been maintained—yet sufficiently close to
the transition point, the corrections to the cubic equation
�19� are negligible and R�C�Dc−D�� with the prefactor
C=��3/4��16−3�� and the mean-field exponent �=1/2
�1,5,11� is asymptotically exact. As shown in the Appendix,
the uniform state is stable for D�Dc but unstable for
D�Dc.

Well below the critical point, we compute the coefficients
pk,n and rn to higher order from �15� and �17�. The order
parameter is then obtained by numerically solving �16�, trun-
cated at the corresponding order. Since the Fourier modes
decay exponentially with the wave number

Pk � Rk, �22�

and since the order parameter obeys 0�R�1, a moderate
number of Fourier modes is sufficient to accurately compute
P���. The order parameter rapidly converges with N. For
instance, N=11 already provided an accurate value for R �see
Fig. 3�. We note that at this order, it is still possible to cal-
culate the necessary partitions manually.

Once the order parameter is known, the Fourier modes are
obtained from �12�. The steady-state distribution �4� becomes

P��� =
1

2�
+

1

�
R cos � +

1

�
G1,1R2 cos�2��

+
2

�
G1,2G1,1R3 cos�3�� + O�R4� . �23�

In the vicinity of the transition point, the lowest mode domi-

nates. As the diffusion coefficient decreases, the angle distri-
bution becomes sharply peaked around �=0, reflecting that
the rods are strongly aligned �Fig. 4�. We now analyze this
nearly perfect alignment in more detail.

V. NEARLY PERFECT ALIGNMENT

For very small diffusion constants, the order parameter
approaches unity and therefore, the series solution �12� is no
longer useful. Indeed, very close to D=0, the convergence is
slow �Fig. 3�. Nevertheless, it is still possible to treat the
problem by performing the scaling transformation

P��� =
1

�D
f� �

�D
� . �24�

The scaling distribution remains normalized, �dxf�x�=1. At
the steady state, it obeys the nonlinear integrodifferential
equation

f�x� =
d2f�x�

dx2 + �
−	

	

dyf�x −
y

2
� f�x +

y

2
� . �25�

This equation was obtained by substituting �24� into the mas-
ter equation �2�, setting the time derivative to zero, and re-
placing the integration limits ±� /�D with 	. In the limit
D→0, the periodic nature becomes irrelevant, and the prob-
lem reduces to the randomly forced inelastic Maxwell model,
for which several properties including the moments and the
Fourier transform can be obtained analytically �18,19�.

Consider for example the normalized moments
Mn= 	�n
 /n!. They can be expressed in terms of the
moments of the scaling distribution Mn=Dn/2mn with
mn=�dxxnf�x� /n!. Substituting this definition into the master
equation �25� and performing the integration, the moments
mn satisfy the closed set of equations

mn = mn−2 + 2−n
l=0

n

mlmn−l,

from which the moments are found recursively, m0=1, m2

=2, and m4= 18
7 �the odd moments vanish�. The order param-

eter can be expressed in terms of the moments,
R= �	ei�
 � =1−M2+M4+¯ and therefore, it is given by a
Taylor series in powers of the diffusion constant

FIG. 3. �Color online� The order parameter versus the diffusion
coefficient. The order parameter was obtained by solving polyno-
mials of increasing order.

FIG. 4. �Color online� The angular distribution for various val-
ues of D. The angle distribution was obtained from the first 15
Fourier modes.
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R = 1 − 2D + 18
7 D2 + ¯ . �26�

This expression is useful only for very small diffusion con-
stants, i.e., D→0.

Since the Fourier transform F�q�=�−	
	 dxeiqxf�x� is the

generating function of the moments, it also satisfies a closed
equation, �1+q2�F�q�=F2�q /2�. Solving this equation recur-
sively, the Fourier transform equals the infinite product �18�

F�q� = �
n=0

	 �1 +
q2

4n�−2n

. �27�

The poles closest to the origin govern the large-x asymptot-
ics. The simple poles located at q= ± i imply an exponential
decay �19,22,23�

f�x� � Ce−�x� �28�

as �x � →	. The residues to these poles yield the prefactor:
C= 1

2 exp�n=1
	 n−1�22n−1−1�−1�=1.479 19.

VI. GENERAL ALIGNMENT RATES

The above solution can be generalized in a number of
ways. For instance, it is straightforward to generalize it to
imperfect alignment processes, where the orientation differ-
ence is reduced by a fixed factor �analogous to an imperfect
inelastic collision�, in each alignment event.

Moreover, it is also possible to analyze situations in which
the alignment process �1� occurs with arbitrary alignment
rate K��1−�2�. We assume K���=K�−�� and without loss of
generality, impose the normalization, 1

2��−�
� d�K���=1. The

master equation becomes

0 = D
d2P

d�2 + �
−�

�

d�K���P�� −
�

2
�P�� +

�

2
�

− P����
−�

�

d�K���P�� + �� . �29�

The Fourier modes satisfy a generalization of �5�

Dk2Pk =
1

2 
i+j=k

�Ai−j + Aj−i − A2i − A2j�PiPj . �30�

The constant Aq is now Aq= 1
2��−�

� d�eiq�/2K���. Again
A0=1 and Aq=A−q, but it is not necessarily true that these
constants vanish at even indexes as was the case for uniform
alignment rates. By excluding the zero modes i=0 and j=0
from the summation in �30�, and by following the same
steps, we recover the governing steady state Eq. �9�. The
generalized coupling constants �8� are

Gi,j =
1

2

Ai−j + Aj−i − A2i − A2j

1 + D�i + j�2 − 2Ai+j
. �31�

These coupling constants are manifestly symmetric
Gi,j =Gj,i. We conclude that the series solutions �12� and �16�
hold for arbitrary alignment rates.

By repeating the steps leading to �20�, we find that the
critical diffusivity generally equals Dc=2A1−1. The condi-

tion for having a transition is therefore A1�1/2. For the
constant interaction rate A1= 2

� , and then Dc= 4
� −1. For the

hard-sphere rate K���= 2
� ���, then A1= 4

�2 ��−2�, but since

A1�1/2, the system is always disordered. For the more re-
alistic hard-rod rate �24�

K��� =
�

2
�sin �� , �32�

and since A1= 2
3 , the system undergoes a phase transition. We

conclude that depending on the alignment rate, there may or
may not be an ordered phase.

We note that in the kinetic theory of gases, analytic solu-
tions are feasible only for the Maxwell model, where the
collision rate is velocity independent �25–27�, while the gen-
eral Boltzmann equation is not analytically tractable. Re-
markably, the analytic solution presented above does not re-
quire a constant rate and for example, the hard-sphere like
collision rate K���=C ��� can be solved analytically. The
discrete nature of the Fourier spectrum makes this possible.

VII. CONCLUSIONS

In conclusion, we studied kinetic theory for alignment of
rods. At the steady state, alignment by pairwise interactions
is balanced by the diffusive motion. At large diffusivities, the
system is disordered and at low diffusivities it becomes or-
dered.

The Fourier modes obey a closed equation that can be
solved by selective iterations. This allows one to express all
Fourier modes in terms of the lowest mode, or equivalently,
the order parameter. Similarly, one can obtain a closed equa-
tion for the order parameter itself, and then the solution be-
comes explicit. Since the Fourier modes decay exponentially
with the wave number, a moderate number of terms is suffi-
cient to accurately obtain the full angular distribution.

This kinetic approach fundamentally differs from the tra-
ditional Hamiltonian approach for describing phase transi-
tions from ordered to disordered states. Yet, the characteris-
tics of the phase transition, including in particular, the critical
exponent, are identical to the mean-field theory. The kinetic
theory has the virtue that it directly yields distribution func-
tions.

The exact solution, using integer partitions, is very gen-
eral. It applies to generic “inelastic” alignment rules and
more importantly, to general alignment rates. The periodic
symmetry of the problem is ultimately responsible for this
because it involves a discrete Fourier spectrum. It may be
useful to generalize this approach to alignment of rods in
three dimensions.

The nonlocal and nonlinear governing equation, in its
simplest form �9�, appears in other physical processes includ-
ing aggregation �30�, and it may be interesting to utilize the
integer partition solution method in other contexts. There are
other natural extensions of this work including investigation
of relaxation toward the steady state, studies of spatial cor-
relations in low-dimensional systems, and restricted range
interactions where multiple alignment directions may arise
�28,29�.
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Experimentally, it may be possible to realize this order-
disorder transition by vibrating macroscopic granular chains
�8� or granular rods �9,10� where vibration causes diffusion
and inelastic collisions result in alignment.
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APPENDIX: STABILITY OF THE UNIFORM STATE

The uniform state P���= 1
2� is always a steady state of the

master equation �2�. To check when this state is stable, we

write P�� , t�= 1
2� + p�� , t�. To linear order, the perturbation

satisfies

�p

�t
= D

�2p

��2 + �
−�

�

d�
p�� − �/2� + p�� + �/2�

2�
− p .

�A1�

Let us take a periodic perturbation with wave number k and
growth rate , that is, p�� , t��eik�+t. Substituting this form
into Eq. �A1� gives the growth rate

k = 2Ak − 1 − Dk2. �A2�

The growth rate is positive only for the lowest mode, k=1,
and hence, stability is governed by the smallest wave number
k=1 for which 1=Dc−D. Indeed, the uniform state is un-
stable below the critical diffusion constant �20�.
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